SEMESTER II

PEPHC20 - ELECTIVE II A: CRYSTAL GROWTH, NANO SCIENCE AND RESEARCH METHODOLOGY

Year: I	Course	Title of the	Course	Course	H/W	Credits	Marks
	Code:	Course:	Type:	Category:			
Sem: II	PEPHC20	Crystal Growth,	Theory	Major	4	4	100
		Nano Science and		Elective			
		Research					
		Methodology					

Course Objectives

- 1. To provide the students, knowledge on crystal growth techniques and nanoscience
- 2. To learn the basic concepts in research methodology for pursuing future research work.

Course Outcomes (CO)

The learners will be able to

- 1. Explain the fundamental concepts behind in the formation of crystal.
- 2. Demonstrate the various methods in crystal growth techniques and their advantages.
- 3. Understand the advanced methods of characterization instruments for crystal and nanomaterials.
- 4. To familiarize about the physical concepts and principles of nanoscience and nanotechnology.
- 5. Provide a broad view of various approaches for the synthesis and fabrication of nanostructures and their outstanding properties useful to carry out their project and research work.

CO	PSO							
CO	1	2	3	4	5	6		
CO1	Н	Η	Η	М	Μ	Μ		
CO2	Н	Н	L	Н	Η	Μ		
CO3	Н	Η	Μ	Н	Η	Μ		
CO4	Н	М	Μ	Н	L	Н		
CO5	Н	Μ	Μ	Н	Η	Н		

СО	РО							
	1	2	3	4	5	6		
CO1	Н	Н	Η	Н	Μ	Н		
CO2	Н	Н	Η	Н	Μ	Н		
CO3	Н	Н	Η	Н	Μ	Н		
CO4	Н	Μ	Н	Н	Н	Н		
CO5	Μ	Μ	Μ	Μ	Μ	Н		

(Low - L, Medium – M, High - H)

Course Syllabus

Unit I: Nucleation and Growth

- 1.1 Nucleation Different kinds of nucleation Theories of nucleation (K1, K2)
- 1.2 Classical theory of nucleation Gibbs Thomson equation for vapour (K1, K2)
- 1.3 Modified Thomson's equation for melt Gibbs Thomson equation for solution (K1, K2)
- 1.4 Concept of formation of critical nucleus Spherical and cylindrical nucleus (K1, K2, K3)
- 1.5 Crystal growth techniques Solution Growth Technique: Low temperature solution growth:Solution Solubility and super solubility Expression of super saturation Miers T-Cdiagram(K1, K2, K3)
- 1.6 Gel Growth Technique: Principle Various types Structure of gel Importance of gel Experimental procedure (K1, K2, K3)

Unit II: Growth and Characterization Techniques

- 2.1 Melt technique: Bridgman technique Basic process –Vertical Bridgman technique Crystal Pulling technique (K1, K2, K3, K4)
- 2.2 Czochralski technique Experimental arrangement Growth process (K4, K5, K6)
- 2.3 X Ray Diffraction (XRD) Powder and single crystal (K1, K2)
- 2.4 Fourier transforms Infrared analysis (FT-IR) FT Raman Elemental analysis (K1, K2)
- 2.5 Elemental dispersive X-ray analysis (EDAX) Scanning Electron Microscopy (SEM) -Transmission electron microscopy (TEM) (K2, K4, K5, K6)
- 2.6 UV-Vis-NIR Spectrometer Etching (Chemical) Vickers Micro hardness TGA DTA PL studies (K4, K5, K6)

Unit III: Basics of Nano Technology

- 3.1 History of Nano technology concept of Nano technology and Nano machines (K1, K2)
- 3.2 Atomic structure molecules and phases Molecular and atomic sizes Surfaces and dimensional space (K1, K2, K3)
- 3.3 Top down and bottom up approach in synthesis Nano scale formation (K3, K4, K5)
- 3.4 Strong intermolecular forces Covalent and coulomb interactions (K2, K4)
- 3.5 Weak inter molecular forces Vander Waal forces Repulsive forces (K2, K4, K5)
- 3.6 Hydrogen bonding, Hydrophobic and hydrophilic interactions (K2, K5, K6)

Unit IV: Fabrication Techniques and Properties of Nano-Structure (9 Hours)

- 4.1 Vacuum Techniques: Thermal evaporation Physical Vapour deposition Ionized Cluster beam deposition Laser vaporization (ablation) laser pyrolysis (K1, K2, K3)
- 4.2 Sputter deposition DC sputtering RF sputtering Magnetron sputtering ECR plasma deposition (K1, K2)
- 4.3 Chemical vapour deposition Electric arc deposition Ion beam techniques -molecular beam epitaxy (K2, K3, K4)
- 4.4 Nanolithography techniques: Lithography using Photons (UV-VIS, Lasers and X-rays) (K2, K3, K5)
- 4.5 Lithography using particle beams Electron and Ion beam Lithography (K1, K2, K3, K4)
- 4.6 Quantum dots and Quantum wires Size dependent variation in magnetic properties Thermal and electronic transport properties (K3, K4, K5, K6)

(10 Hours)

(9 Hours)

(10 Hours)

Unit V: Research Methodology

- 5.1 Meaning of research Objectives of research Motivation of research Types, approaches and significance Methods versus methodology (K1, K2, K3)
- 5.2 Identification of the problem Literature survey Reference collection Necessity and techniques involved in defining the problem (K2, K3, K4)
- 5.3 Research design Needs and features ofgood design Different research design Basic principles of experimental designs Meaning of research report (K2, K3, K4)
- 5.4 Logical format for writing thesis and paper Essential of scientific report: abstract, introduction, review of literature, materials and methods and discussion (K3, K4, K5)
- 5.5 The use of quotation, footnotes, tables and figures Referencing Appendixes Revising the paper or thesis (K4, K5, K6)
- 5.6 Oral power point presentation Poster preparation Editing and evaluating the final product Proof reading The final typescopy(K4, K5, K6)

Books for Study:

- 1. Charles P.Poole, Frank J.Owens Introduction to Nanotechnology Wiley-Interscience, 2003.
- 2. P. Santhana Ragavan and P. Ramasamy Crystal Growth Processes and Methods KRU Publications, Kumbakonam, 2001.
- 3. C.R. Kothari and Gaurav Garg Research Methodology, Methods and Techniques New age International Publishers, III Edition.2014
- 4. Santosh Gupta Research Methodology Methods and StatisticalTechniques
- 5. Rajammal et al., -A hand Book of Methodology of Research Sri Ramakrishna Mission Vidyalaya Press, Coimbatore.

Books for Reference:

- 1. J.C. Brice Crystal Growth Processes John Wiley and Sons, New York, 1986.
- 2. C.Hawkins & M Sorgi Research Ed Norosa Publishing House, New Delhi 2000
- 3. Robert Ross Research: An introduction - Harper and RowPublications.
- 4. P. Saravanavel Research methodology - KitlabMahal, SixthEdition.
- 5. R.A. Day How to write and publish a scientific paper CambridgeUniversity press
- 6. Anderson Thesis and Assignment writing - Wiley EasternLtd.

SEMESTER III

Year: II	Course	Title of the	Course	Course	H/W	Credits	Marks
	Code:	Course:	Type:	Category:			
Sem: III	PIPHF20	IEP: Numerical	Theory	Independent	-	2	100
		Methods and		Elective			
		Research					
		Methodology					

PIPHF20 - IEP: NUMERICAL METHODS & RESEARCH METHODOLOGY

Course Objectives

- 1. To impart knowledge of various concepts involved in numerical analysis
- 2. To prepare the students for higher studies

Course Outcomes (CO)

The learners will be able to

- 1. Understand and apply numerical concepts to solve equations and evaluate any integrals
- 2. Solve ordinary differential equations using numerical differentiation techniques
- 3. Understand the basics of research and research methodology
- 4. Define research problem in their own domain and describe various research design
- 5. Draw a good research report and impart research communication techniques

СО	PSO							
	1	2	3	4	5	6		
CO1	Н	М	Н	Μ	Н	L		
CO2	Н	М	Н	Μ	М	L		
CO3	Н	L	L	L	М	Н		
CO4	Н	Н	М	Μ	L	Н		
CO5	Н	Н	L	Μ	Н	М		

СО	РО							
	1	2	3	4	5	6		
C01	Н	Н	Н	М	М	Н		
CO2	Н	Н	М	Н	М	М		
CO3	М	Н	М	Н	Н	Н		
CO4	Н	М	Н	М	М	М		
CO5	М	М	Н	М	М	М		

(Low - L, Medium – M, High - H)

Course Syllabus

Unit I: Solution of Equations and Numerical Integrations

- 1.1 Fixed point iteration method (K2, K3, K4, K5)
- 1.2 Newton's Raphson method (K2, K3, K4, K5)
- 1.3 Solutions of simultaneous equation (K2, K3, K4, K5)
- 1.4 Numerical integration using Trapezoidal(K2, K3, K4, K5)
- 1.5 Simpson's 1/3 rule (K2, K3, K4, K5)
- 1.6 Simpson's 3/8 rule (K2, K3, K4, K5)

Unit II: Numerical Differentiations

- 2.1 Solutions of equations (K2, K3, K4, K5)
- 2.2 Numerical Differentiation (K2, K3, K4, K5)
- 2.3 Numerical solution of first order differential equations (K2, K3, K4, K5)
- 2.4 RungeKutta method (K2, K3, K4, K5)
- 2.5 Taylor series method (K2, K3, K4, K5)
- 2.6 Euler's and modified Euler's method (K2, K3, K4, K5)

Unit III: Research Methodology - An Introduction

- 3.1 Meaning of research Objectives of research (K1, K2)
- 3.2 motivation of research (K1, K2)
- 3.3 Types, approaches and significance Methods versus methodology (K1, K2)
- 3.4 Research in scientific methods Research process (K1, K2, K3, K5)
- 3.5 Criteria for good research Problem encountered by research in India-(K1, K2, K4)
- 3.6 Funding agencies (K1, K2)

Unit IV: Research Design

- 4.1 Identification of the problem Literature Survey (K1, K2, K6)
- 4.2 Reference Collection (K1, K6)
- 4.3 Necessity and techniques involved in defining the problem (K1, K2, K4)
- 4.4 Research design Needs and features of good design (K3, K4, K5)
- 4.5 Different research design (K3, K4, K5, K6)
- 4.6 Basic principles of experimental designs (K1, K2)

Unit V: Research Communication

- 5.1 Meaning of research report Logical format for writing thesis and paper (K1, K2)
- 5.2 Essential of scientific report: abstract, introduction (K1, K2)
- 5.3 Review of literature, materials and methods and discussion The use of quotation (K1, K2)
- 5.4 Footnotes tables and figures referencing appendixes revising the paper or thesis (K2, K6)
- 5.5 Oral power point presentation Poster preparation (K1, K2, K6)
- 5.6 Editing and evaluating and the final product proof reading the final types copy (K1, K2, K6)

(13 Hours)

(15 Hours)

(16 Hours)

(14 Hours)

(14 Hours)

Books for Study:

- 1. Dr. G. Balaji Numerical Methods 15th edition G.Balaji Publishers-2017
- 2. E. Balagurusamy Numeric Methods Tata Mc Graw Hill.
- 3. C.R. Kothari and Gaurav Garg Research Methodology, Methods and Techniques New age International Publishers, III Edition. 2014
- 4. Santosh Gupta Research Methodology Methods and Statistical Techniques
- 5. Rajammal et al., -A hand Book of Methodology of Research Sri Ramakrishna Mission Vidyalaya Press, Coimbatore.

Books for Reference:

- 1. C.Hawkins& M Sorgi Research Ed Norosa Publishing House, New Delhi 2000
- 2. Robert Ross Research: An introduction - Harper and Row Publications.
- 3. P. Saravanavel Research methodology - KitlabMahal, Sixth Edition.
- 4. R.A. Day How to write and publish a scientific paper Cambridge University Press.
- 5. Anderson Thesis and Assignment writing - Wiley Eastern Ltd.